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Capacity of Multiple-Antenna Fading Channels:
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Abstract—The capacity of multiple-input multiple-output An important open problem in MIMO communication theory
(MIMO) wireless channels is limited by both the spatial fading s to obtain closed-form analytic formulas for the capacity or
correlation and rank deficiency of the channel. While spatial . .tual information of wireless MIMO channels. However. it

fading correlation reduces the diversi ains, rank deficiency . . . . .
due t% double scattering or keyhole ef%cgt]s decreases the spa)t/ial's a mathematically challenging task in that calculations of the

multiplexing gains of multiple-antenna channels. In this paper, MIMO capacity require taking expectations with respect to a
taking into account realistic propagation environments in the random channel matrix rather than a scalar random variable

presence of spatial fading correlation, double scattering, and (RV) for the single-antenna case. In random matrix theory
keyhole effects, we analyze the ergodic (or mean) MIMO capacity [28]-[31], it is well known that the eigenvalues of a large class

for an arbitrary finite number of transmit and receive antennas. f d tri bles h f d fluctuati
We assume that the channel is unknown at the transmitter and O f&ndom matrix_ensembles have fewer random fuctuatons

perfectly known at the receiver so that equal power is allocated @S the matrix dimension gets larger—that is, the random
to each of the transmit antennas. Using some statistical prop- distribution of eigenvalues converges to a deterministic limiting

erties of complex random matrices such as Gaussian matrices, distribution for a large matrix size. Another useful result of the
Wishart matrices, and quadratic forms in the Gaussian matrix, random matrix theory is a central limit theorem for random

we present a closed-form expression for the ergodic capacity of . . S
independent Rayleigh-fading MIMO channels and a tight upper determinants [29], [32], which states that the distribution of

bound for spatially correlated/double scattering MIMO channels. the random MIMO capacity is asymptotically Gaussian as the
We also derive a closed-form capacity formula for keyhole MIMO  number of antennas tends to infinity with a certain limiting
channels. This analytic formula explicitly shows that the use of ratio between the numbers of transmit and receive antennas.
mdultlple antgnnas |r_1dkeyhole chalnnells_ clmly offers the dlver_sn)I/ These results of the random matrix theory were applied for
advantage, but provides no spatial multiplexing gains. Numerical "\ = " o [1] and [10]-[13], and

results demonstrate the accuracy of our analytical expressions - .
and the tightness of upper bounds. for spatially correlated channels in [17] and [18]. Although

Index Terms—Channel capacity, distributions of random ma- this. a.symptot.ic a.naly?'is .is only an appro>.<ir_nation to the (?ase
trices, double scattering, keyhole, multiple-input multiple-output of finite matrix size, it circumvents the difficult problem in
(MIMO) systems, multiple antennas, spatial fading correlation. ~ analytical calculation of the MIMO capacity and provides
important insights into impacts of the use of multiple antennas
on the capacity behavior.

For the finite number of transmit and receive antennas, Telatar
ULTIPLE-input multiple-output (MIMO) communica- [1] derived the analytical expression for the ergodic (or mean)
tion systems using multiple-antenna arrays at both tlcapacity of i.i.d. Rayleigh flat-fading MIMO channels by using

transmitter and the receiver have drawn considerable attenttbe eigenvalue distribution of the Wishart matrix in integral form
in response to the increasing requirements on high spectraolving the Laguerre polynomials. In [12], Smith and Shafi
efficiency and reliability in wireless communications [1]-[10]further derived the variance of capacity by extending the anal-
Recent seminal work in [1] and [2] has shown that the use w$is in [1] and obtained the complementary cumulative distribu-
multiple antennas at both ends significantly increases the tien function of the capacity using the Gaussian approximation
formation-theoretic capacity far beyond that of single-antentarandom MIMO capacity. Similar results are also found in [13]
systems in rich scattering propagation environments. As threwhich the density function of a random mutual information
number of antennas at both the transmitter and the receiver dgetd.i.d. MIMO channels was derived in the form of the inverse
larger, the capacity increases linearly with the minimum of tHeaplace transform and the same Gaussian approximation result
number of transmit and receive antennas for fixed power aad in [12] was presented.

bandwidth, assuming independent and identically distributedin realistic propagation environments, rank deficiency of a
(i.i.d.) Rayleigh fading between antenna pairs [1]—[3]. channel matrix due tpinholeor keyholeeffects [19]-[21] may

. . . , severely degrade the capacity of MIMO channels as well as spa-
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thatincludes both the fading correlation and rank deficiency, and Il. REVIEW AND SOME RESULTS ONRANDOM MATRICES
pointed out the existence of pinhole channels that exhibit uncor-

. . X uch attention has been given over the years to the distri-
related spatial fading between antennas but still have a poor ralion theory of random matrices because they appear in many
property. Also, in [20] and [21], the occurrence of a rank-defi-

Bpplications in statistics and communication theory. The distri-
cient channel, called a keyhole channel, has been proposed S'Sp 4 ;

keyhole, the chgnnel _has_ only a single degree of freedom ition, was perhaps the beginning of a theory of distributions
though the spatial fading is uncorrelated, and each entry of

h I L q ¢ lex G ian RV random matrices [36], [28]. In this section, by focusing on
channel matrix Is & product of two complex Gaussian RVS, i complex cases, we briefly review the definitions and distri-

contrast to the complex Gaussian normally assgmed in Wirel%%ﬁions of Gaussian matrices, Wishart matrices, and positive-
chalmnels. IPdfaCtt;l keyh(;le phami/l%mﬁy be lvle\_/rvre]d asda SH&finite guadratic forms in the Gaussian matrix—which gener-
clal case ot couble scatiening channeis. 1Nese degely, o the univariate Gaussian RV, central chi-square RV, and cen-
o positive-definite quadratic form in the Gaussian RV, respec-

vahdatllon through phys_|cal measuremeptg. . to calculate the ergodic capacity of MIMO channels in the next
In this paper, taking into account realistic propagation enVia ction

ronments such as spatial fading correlation, double scatteringm deriving the statistics of a certain random matrix, the Jaco-

ahnd keyh(cj).le phenqmer}a',vlvlv'a grO\r/:de arralyt.lchalf.expres&ons.69£ns of matrix transformations are needed and functions of a
t ed ergodic capacity OI . T anneds wit |r:|te tdrafnsm'Pnatrix argument are also widely used in calculations involving
andreceive antennas._ npar t_|cu ar, we derive a Closed-1orm @iy \ariate distributions. The introductions to them are
pression for the capacity of |.|:d. Rayle|gh-fad|.ng MIMO chan- rovided in [28], [33], [34], [37], [38], and [40]. In particular,
nels. In contrast to Telatar's integral expression, this CapacEy?)] has dealt with a wide class of matrix-variate distributions.

forml_JIa IS In terms .Of a finite sum (.Jf the w_ell—known specia [though this textbook concentrates on matrices of real random
funct!ons (exponential integral func’qons, orlngqmplete 9amMMA iates, one can easily develop the corresponding complex
functions) and can be calculated without explicit numerical i ases.
tegration. For spatially correlated and double scattering MIM
channels, we develop tight upper bounds on the capacity Ry Complex Gaussian Matrices
using Jensen’s mequal_lty _and e_lementary propertles Of.deter'l_et us denote the complex-variate Gaussian distribution
minants, such as the principal minor determinant expansion for : . X
L : ) ; with mean vectoim € C? and covariance matriX € C?*?

the characteristic polynomial of a matrix and the Bmet—Cauc%N (m, ®)
formula for the determinant of a product mattixinally, for pATR
keyhole MIMO channels we provide a closed-form solution for Definition 1.1 ([33, Definition 2.2.1]): A random matrix
the capacity and show that increasing the number of antendéss €C?*? is said to have a matrix-variate Gaussian distribution
serves only to eliminate the effect of fading, but provides neith mean matrixM € C€?*? and covariance matriX @ ¥
further benefits (e.g., spatial multiplexing gains). whereX € C?*? > 0 and¥ € C?*? > 0 are Hermitian, if

The rest of the paper is organized as follows. Section Il i . "
gives, for reference, the definitions of the complex Gaussian vee(X") ~ Ny (vec(M'), T @ ¥).
matrix, Wishart matrix, and the positive-definite quadratic form ~
in the complex Gaussian matrix, and presents some new resulté/e use the notatioX ~ N, , (M, £ @ ¥) to denote that
concerning expectations of certain (logarithmic) determinant¥l is Gaussian distributed. The density function)fis given
forms of them with a finite matrix size. Using some of th&y
results in Section Il, we derive a closed-form expression of the _ _ _
ergodic MIMO capacity for the i.i.d. case and upger bounds for PX (X) =" det (£) ™ det (¥)
spatially correlated and double scattering cases in Section Il -etr {—2_1 (X -M)¥ (X - M)T}. (2)
We, finally, derive a closed-form capacity formula for keyhole

MIMO channels in Section I1I-D. Section IV concludes thdn the following lemma, we give a preliminary result on the
paper. complex Gaussian matrix.

We shall use the following notations in this paper. The su- | emma I.1: If X ~ N, 4 (0, I, ® I,), then we have for
perscriptst, T', andt denote the complex conjugate, transposeg, « pandk < g T

and transpose conjugate, respectivelandl,, denote the Kro- o .

necker product of matrices and ax n identity matrix.vec (A)  IE [det (X;}l? A ’L].*'k> det ((XT);“’;”’ U"‘)]
. . ’ 1o JR 1,02, ..., Vg

represents a vector formed by stacking all the columnéioto

L i =y i = P
a column vectortr (A) denotes a trace operator of a square ma- = { ]5 Ifti: = UL J1 = UL e B = Uk Jh = Uk
trix A andetr (A) = exp {tr (A)}. By A > 0 we denote thad ’ otherwise
is positive definite. (2

1This approach was firstintroduced by Grantin [10] to obtain the upper boudnerel <y <ip < --- <ip <p, 1<y <jo <--- <Jr <4,
on the ergodic MIMO capacity for the i.i.d. Rayleigh-fading case. 1<y <ur < <up <qg, 1 <1 <wve<---<wv <p,
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anddet (X?°% % ) is a minor determinant ok, i.e., ade-  If X ~ N, , (0, 2@ 1I,),p < ¢, andY = XX, thenY

terminant éi‘ tjﬁdci k matrix lying in theiy, is, ..., i, rows is complex central Wishart distributed, i.&, ~ VVI, (¢, X).
and in thejy, js, ..., jr columns ofX [25]. The next theorem leads to establish a closed-form expression for

Proof: From the definition of the determinant [25], [26],the ergodic capacity of i.i.d. Rayleigh-fading MIMO channels in
we get Section IlI-A.

Theorem IL.1: If Y ~ W, (¢, I,,) andy is an arbitrary posi-
IE [det (in 2 ) det((X Ty uz e )] tive real-valued constant, then we have
. E[Indet (I, + pY)]
=K Z (_1) (@) LijayLisas *** Ligay p—1 i ( n l)
a=(ay,asz,...,ap) _ 1/ q—7p
=e ;]2)122{ 22i— llllq p+1)

: vaf)-b» by by . . . q—p+1
1911202 k ok 25— 27\ (27 + 29— 2p
b=(b1, bs, ..., by, . E - 4
Z( A)Z {(cpyer® <‘_J>< 2j =1 >Z k+1<)}()
— _1 T(@a T

a=(ayi,az,...,ar) b=(b1,ba, ..., by) where
]E ‘/Eiaxi‘a'.'xi-a-x:; x: .:L':; } oo
[ ' 1_ e Ftk b Toabe kbk] E,(2)= / e *x "dx, n=0,1,2,..., Re(2) >0
_{k!./ Ifilzvl,jlzuh...,ik:vk,jk:uk J1
0, otherwise is the exponential integral function of ordef45].
wherez;; is the(s, j)th entry of X anda = (a1, as, ..., ax) Proof: See Appendix A. .
) | ; o ;

varies over all! permutations of the numbeys, ja, - ..., i, C. Positive-Definite Quadratic Forms in Complex Gaussian
andr (a) indicates the number of inversions in the permuta-, atrices
tion @ from the normal ordey, ja, ..., ji. Similarly, b = . _ _ _ .
(by, b, ..., by) ranges over alk! permutations of the num- Khatri [40] has first given a representation for the density
bersus, us, ..., ux, andr (b) is the number of inversions of function of matrix quadratic forms in the complex Gaussian ma-
by, ba, ..., by, from the normal ordets, us, ..., ur. The ex- trixand differenttypes of representation have been developed in
pected terms in summation become nonzero only vihenv,,, [41]-[43]. It reduces to the Wishart density under certain con-
jn = un foralln = 1, 2, ..., k, and the permutations and ditions.

b have the same order—otherW|se we always get terms mulpefinition 11.3 ([33, Theorem 7.2.1]):Let

tiplied by other independent zero-mean Gaussian entries—and

the corresponding expected values are equal to one because all X ~ ./\N/p,q 0,2 WV), p<gq.

entries of X are independent with unit variance. There afe

such nonzero terms. The last step follows immediately frofthen a positive-definite quadratic form X associated

these observations. O with a Hermitian matrixA € C€%*? > 0, denoted by
Y~Q,,(A X, W), is defined as

B. Complex Wishart Matrices

Wishart distributions, first obtained by Fisher [35] in the bi-
variate case and generalized by Wishart [36] using a geometrical
argument, are of greatinterest in multivariate statistical analysis The density function oF ~ O, , (4, £, ¥) s given by [40]
arising naturally in applied research and as a basis for theoret-
ical models (see [28], [30], [33] and references therein). pyY =

Definition 11.2 ([33, Definition 3.2.1]): A random Hermi-
tian positive-definite matri%” € C?*” is said to have a com-
plex central Wishart distribution with parameters;, andX €
CP*? > 0, denoted by ~ W, (¢, £), p < ¢, if its density
function is given by [38], [10]

Y = XAX'.

(g det(E) 7 det(AR) P det (V)7

etr (—p 'BTY) o R B, o 1BTYY), Y >0 (5)

whereB=1,—pA~/?¥~'A7"/? > 0is an arbitrary con-
stant andnﬁ“,@(-) is the hypergeometric function of two Her-
mitian matrices defined by (51). Note thatd®¥ = I, the den-
sity (5) reduces to the Wishart density, (¢, £). Recently, the
py (Y) = = 1 det (£)™9 det (V)77 etr (_2—1y) 7 determinant represgntation for (5) has been derivt—_zd in [4_3] to
L'y (q) settle the computational problem of hypergeometric functions
Y >0 (3) ofmatrixarguments.

The following two theorems are the generalizations of [10,
whereT', (@) = 7?@=V/2[[?ZT'(a — i), Re(a) > p— 1, Lemma A.1] and [10, Theorem A.4] to quadratic forms in the
is the complex multivariate gamma function [38, eq. (83)] ancbmplex Gaussian matrix (of course, Wishart matrices with ar-
T'(-) is the gamma function. bitrary covariance structure), respectively.




SHIN AND LEE: CAPACITY OF MULTIPLE-ANTENNA FADING CHANNELS 2639

Theorem 1.2 (Moments of Generalized Varianc#):)Y ~ where the)-rowed principal minor determinant (i.g:,= 0) is
Q,.4 (A, T, ¥), then thevth moment of the generalized vari-assumed to bé. Moreover, letA = BCD whereB € €7,
ancedet (Y) is given by C € ", andD e €°*?, then from the Binet-Cauchy for-
I [det (Y)"] = oP(H?) et (£) det (AT) ™7 mula for the determinant of a product matrix [25], [26], we can

write thek-rowed principal minor determinant of as

p—1
ol (g+v, pig;B) || (a—1i), (6) det (Aﬁ ijj“ﬁﬁ)
1=0
wherep > 0, (a),=a(a+ 1) --- (a+n—1), (a)o=1, a0, = > > {det (Bﬁ 32’""31)
is the Pochhammer symbol apd (-) is the Gauss hypergeo- 1<51 <2< <G <b 1<us <up <+ <up <c
metric function of a Hermitian matrix defined by (50). - det (Cﬂul] 7 ".ﬂl.jflk> det (Dgll iy )} (10)

In particular, ifg = p, then ) ! .
P =r - where ifk > b or k > ¢, then thek-rowed principal minor

v v . determinant of the product matrk becomes zero. Note that by
E [det (Y)"] = det (EA¥) H (=1, 7) easy induction, the property (10) can be extended to the product
of any number of matrices.
LetX ~ N, , (0, I,®1,), thenY = Z/2XQX'x'/2
Theorem I1.3: If Y ~ Qp,q (A, ¥, ¥) andy is an arbitrary Using (9), (10), and Lemma Il.1, we have the result (11) shown
positive real-valued constant, then we have at the bottom of the page. O

E [det (I, + Y] We remark that i2 = I, andA¥ = I, in Theorem I1.3, we

P 4 have
- ];0 {u’%! > det(Enion) S det (sl = (p)

1<i1 <40 << <p 1<y <ip <+ <ip <p g

U u u and
> (@) ®
1<uy <us<--<up <q
1/2 172

where@ = ¥ " AW¥ ._which yield the following result on the Wishart matrlk ~

Proof: The proof of this theorem depends on thefollowmg/v (0, I,):
elementary properties of determinants. For amyp matrix A, p % dp):
det (I,, + A) can be written as a sum of all the principal minor k

. . : . E[det (I, + nY)] k!

determinants from the theorem of principal minor determinant [det (T, + 1 Z”
expansion for the characteristic polynomial of a matrix [10]

=0

Proof: See Appendix B. O

> det(@upuiiu) = <Z>

1<u<us < <urp<q

25]. ie.. ’ Zp-u”LZ P(=1/p) (12)
where the last step follows from the expression of the Laguerre
det (I Z 3 det (Az?;i ;:) (9) polynomial in (40). This result was first derived by Grant [10,
k=0 1<i1 <ia<--<ir<p Theorem A.4]. Theorem 11.3 will be applied to obtain an upper

E[det (I, + pY)] = B [det(I,, + ,EXQXT)}

Z S det ((umxQXT) )

=01<i1<i2<-- <1, <p

DD > > > det{ (25 ) det (@i i)

k=0 1<dy <o < < <p 1<71 <J2 < <Jp <p 1<ur <up <+ <up <q 1<v; <vp <+ <vp <q
...... V1,02, ..., Uk
o (1) o (000}
1,U2, uny L1502, ey
p
_ k 11, 7,2 ik UL, U2,y eeny UL
> ST derd (EnEoi) des (Qunizo)
k=0 1<i1 <o < <ip <p 1<u <us <---<up <q

B [det (30550 ) deo (X750 }
p .
St 3 de(spiot) 3 defQuimi) (11)
k=0

1<i1 <o < <1, <p 1<ui<us<---<up<q
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bound on the ergodic capacity of MIMO channels in the next Theorem I1I.1: If H ~ /\7,,775 (0, I, ® I), i.e., for an i.i.d.
section. Rayleigh-fading MIMO channel with transmit and- receive
antennas, the ergodic capacity in bits/s/Hz under transmit power

constraintP and equal power allocation is given b
I1l. CAPACITY OF MIMO W IRELESSCHANNELS P q P 9 y

m— i 2] .
We consider a point-to-point communication link with (), —log, (¢) et/ﬂ,izi (-1)" (29)! (n—m~+1)!
transmit andr receive antennas. In what follows, we refer' /" 2 22— (n—m+7)!

. . t=0 j=0 =0
ton = max{t,r} andm = min{t, r} and restrict our =

analysis to the frequency flat-fading case. We assume that the .<2’i—2j> <2j+2n—2m> niHE <£>
channel is perfectly known to the receiver but unknown to the i—j 25—1 = h ~y ’
transmitter. The total power of the complex transmitted signal (18)
vectorz € C' is constrained t@® regardless of the number of R R
antennas, i.e., Proof: If H ~ N, (0, I, ® I;), thenE ~ W,, (n, I,,).
From (16) and Theorem 1.1, we have the theorem. O
E [z'z] < P. (13) _ _ .
The analytical expression of(C), =~ for the iid.
At each symbol interval, the received signal veajoe € is Rayleigh-fading case was first derived by Telatar [1] in
given by single integral form involving the Laguerre polynomials. In
contrast, Theorem Ill.1 provides a closed-form expression
y=Hz+n (14) for (C), , in terms of the exponential integral functions (or

incomplete gamma functions). Moreover, it generalizes the
where I:I2 € _C"*" is a random channel matrix and ~ previously known result of closed-form capacity formulas
N (0, EnIT) is a complexr-dimensional additive white for Rayleigh-fading channels with reception diversity [22] to
Gaussian noise (AWGN) vector. The entrtgs, i=1, 2, ..., » MIMO cases.
andj=1, 2, ..., t of H are the complex channel gains between Example 1: Considerr = ¢. From (18) withn = ¢ and

. . . L. 2
transmit antenng, and receive antenniawith B[|h;;| ] = 1. m = t, the ergodic capacity of an i.i.d. MIMO channel with

lg this ;a}sez, the average SNR at each receive antenna is e%“é?\'tennas at both the transmitter and the receiver is given by
v = O,

When the transmitted signal vecteris composed of sta- it (-1)' [2i—2j
- . i J
tistically independent equal power components each with a dQ>t, . = log, (e) et/ E E E 92i—1 < >

cularly symmetric complex Gaussian distribution, the channel i=0 j=0 1=0 e
capacity under transmit power constrehis given by [1], [2] 25\ /27 < n
SR} e
O = log, det (IT + %HHT ) (bits s/ Hz)  (15) J k=0

The ergodic (mean) capadityf the random MIMO channel, ~Example 2 (Multiple-Input Single-Output (MISO) Chan-
which is the Shannon capacity obtained by assuming it #!): Considerr =1, i.e., a MISO channel. From (18) with
possible to code over many channel realizations of the ergoétic ¢ @ndm =1, the ergodic capacity of an i.i.d. MISO channel
fading process, is evaluated by averagifgyith respect to the With ¢ transmit antennas is given by

random channel matri#, i.e., [1] t—1 .
. (O, , =logy () e/ Eryy (-) (20)
(), =F [logQ det (L- + %HH')} R kz:;) v
Y=
=K [IOgQ det (Im + ;-‘5)} (16)  Example 3 (Single-Input Multiple-Output (SIMO) Chan-
. . nel): Considert = 1, i.e., a SIMO channel. From (18) with
where the random matr € C™*™ is defined as n=r andm=1, the ergodic capacity of an i.i.d. SIMO channel
- HH' t> an with 7 receive antennas is given by
H'H, t<r.

r—1
1
<C>1,r = log, (e) el Z Erpa (;) (21)
A. Independent and Identically Distributed MIMO Channels hichis i with 22 k=0 0 if ving the id
which is in agreement wi , €. if a in e iden-
_Now consider an i.i.d. Rayleigh-fading case, i.&, ~ tity (46). g ! a- (40)]if applying

N+ (0, I, ® I). The following result gives a closed-form Applying Jensen’s inequality to (16) and using (12), we ob-

formula hfor tr:e ergodic capacity of i.i.d. Rayleigh-fading,;p, 5 simple and tight upper bound to (18), first derived by Grant
MIMO channels. [10, Theorem 2], as follows:

2The capacity for fading channels can be defined in a number of ways, de- ¢

pending on the amount of channel knowledge, delay constraints, signaling cc{r@)t < mlog, (1) + log, (m') +log, § L™ ——
straints, and statistical nature of the channel. The various capacity measures for " — t ) ¥

fading channels can be found in [23]. (52)
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' ' ' ' ' - it is easy to see thall ~ ~T7t (0, ®r ® ®7). The following
result gives an upper bound on the ergodic capacity of such a
channel.

Theorem IIL.2: If H ~ N, ; (0, ®z @ ®7), i.e., for a cor-

—— Analytic
------ Upper bound

[ Channel matrix H~j\~/,.‘,,(O,I,‘ ®I,)

¥ related Rayleigh-fading MIMO channel withtransmit and-

2 receive antennas, the ergodic capacity in bits/s/Hz is bounded
= as

A

Y " N\

> < — !

£ (C>t7r — 10g2 Z (t> k

g k=0

S

11,92, -0y Tk
Z det (QTil.iQ.....q‘,\,)

1<i1 <ia <+ <ip, <t

Y, det (@%g;“,‘-;;t:r.p“:k)H 29)

1<u;<uz<---<up<r

0 5 10 15 20 25 30 35
SNR, Y (dB)

Proof: If H ~ N, :(0,®r® ®r), then B ~

Fig. 1. Ergodic capacity of i.i.d. Rayleigh-fading MIMO channels with men (I,, X, ¥)where ift > r, ¥ = & and¥ = &7, and
transmit and- receive antennas. ift <7, ¥ =& and¥ = &5. Applying Jensen’s inequality

to (16) and using Theorem 11.3 yield the desired result. [

Furthermore, using [10, Lemma A.1], we have at high SNR . .
! using [ I w v N Note that the upper bound (25) is the logarithm of a polyno-

(C), . <log, [det (_rm L7 E)] mial of degreen in v and thekth-order coefficient of the poly-
’ ” t nomial depends only on sums of @irowed principal minor
~ log, E [det (?E)} determinants of correlation matrices. As théh-order term be-
~ n! comes dominant at high SNR, the asymptotic slope of the ca-
=mlog, (—) +logy —— (23)  pacity curve over SNR in decibels is determinedioiy {¢, 7}
t (n —m)! . ) .
for even correlated channels. In particulan if= m, using (7),
which can be also obtained from (22) using we have at high SNR
. as (4 a)
lim L7 (2) = (C),,, < logy B [det (I, + TE) |
Expression (23) implies that at high SNR, the slope of ~mlog, (l) + log, (m!)
the capacity curve over SNR in decibels is determined by t
min {t, r}—that is, the capacity increasesbits/s/Hz for each +log, det (@) + logy det (Br) (26

3-dB increase in SNR.
hich can be also obtained by taking only theth-order

Fig. 1 shows the ergodic capacity of i.i.d. Rayleigh-fadin .
MIMO channels for the following five cases: &= 2, r = 3; }[%rm in (25). From (23) and (26), we can see that the ca-

_ _ _ _ o _ _ 1o _ ity reduction due to the spatial fading correlation is
byt =4,7r=6;,C)t=61r=9dt=8r=12e)t =10 P _ |
r = 15. The exact capacity and its upper bound are plotte_d(10g2 det (®7) + log, det (®r)) bits/s/Hz at high SNR.

using (18) and (22), respectively. As expected, we see that the&example 4 (Constant Correlation ModelA d x d correla-
slope of the capacity curve over SNR increases with {#, }  tion matrix is called theith-order (positive-definite) constant
and when the SNR and the ratio betweeandr are fixed, the correlation matrix with correlation coefficient € [0, 1), de-
capacity is proportional tmin {¢,  }. For example, the capacity noted by®, (p), if it has the following structure:

of the channel witht = 10 andr = 15 is 115.64 bits/s/Hz at

SNR of 35 dB, which is about five times 23.19 bits/s/Hz for T p»p p

t = 2 andr = 3. p 1 p -+ p

O.(p)=| . S

B. Spatially Correlated MIMO Channels o .
popop o 1 g

We consider correlated Rayleigh-fading MIMO channels
with the correlation structure of a product form [17], i.e., This correlation model may approximate closely spaced an-
1/2 1/2 tennas and may be used for the worst case analysis or for some
H=9%;"H,®y (24) rough approximations using the average value of correlation
whereH, ~ N, (0, I,®1,), ® > 0and®; > 0 are coefficients for all off-diagonal entries of the correlation matrix.

transmit and receive correlation matrices, respectively. From @)Ce eigenvalues @, (p) arel + (d — 1) p and1 — p with
and making the transformation fraHf,, to H with the Jacobian @ — 1 multiplicities, its determinant can be written as

J(Hy, — H) = det (®5) " det (&7) " det©y(p) = (1—p)" 1 (1= p+dp). (27)
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120 T T T T 80 T T T T T T T T T
—— Simulation —— Simulation
,,,,,, Upper bound 70l ------ Upper bound |

100 - . N S t=10,7=15 © SNRY=20dB
Channel matrix H ~ N,,(0,0,(0.7)® ©,(0.5)) y = Channel matrix

H~ N, (0,0,(p)20;(0)) ]

Capacity, <C>,, [bits/s/Hz]
Capacity, <C>y,, [bits/s/Hz]

0 L L I

1 1 1 0 L 1 1 1 1 L
0 5 10 15 20 25 30 35 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SNR, Y (dB) Correlation coefficient, P

Fig. 2. Ergodic capacity of spatially correlated Rayleigh-fading MIMJ™ig. 3. Ergodic capacity as a function of correlation coefficiefdr spatially
channels witht transmit andr receive antennas. The transmit and receiv€orrelated Rayleigh-fading MIMO channels withtransmit andr receive
correlations are constant correlations with correlation coefficippts= 0.5  antennas®r = 0. (p) and®x = O, (p).
andpr = 0.7,i.e.,®; = 0, (0.5) and®r = O, (0.7), respectively.

90 : , . . :

. . . . —— Simulation
Furthermore, any:-rowed principal minor matrices @, (p) 8ol NN I Upper bound | |
are also théth-order constant correlation matrices so that the SNR v =20dB N .
. Channel matrix H ~ N, ,(0,®; ® ®;)
determinants are 70 4 1

Jakes model ;= =Jo((i= j)-2md/A)
det (@4 (p)ii2 ) =(1=p) (L= p+ ko) (28)
wherel < i1 < iy < -+- < i < d.
Let ®;r = O, (pr) and®r = O, (pr) wWherepr, pr €

[0, 1). Then, from (25) and (28), the ergodic capacity is bounde
as

60 - B
50
40

30

e[S () (L) Q) o=

k=0

Capacity, <C>,, [bits/s/Hz]

10/ =

.(1—pT-|—k'pT) (1—pR+kpR)}] . (29) . [ ‘ ‘ i .
0.0 0.5 1.0 1.5 2.0 25 3.0
Fig. 2 shows the simulation results and upper bounds for tiic Antenna spacing in wavelengths, /A
ergodlc capa_C|ty of RaY_'e'gh'fad'”Q MIMO channels with ConFig. 4. Ergodic capacity as a function of antenna spacing in wavelengths
stant transmit and receive correlations for the same numberd@fspatially correlated Rayleigh-fading MIMO channels wittransmit and
antennas as in Fig. 1. The transmit and receive correlation rfideceive antennas. The transmit and receive correlafonand® » follow
. . from the Jakes mod i = i = Jo((1—7)-2nd/X) andy = 20
trices®r and®y are®, (0.5) and®, (0.7), respectively. The gg Obr iy = Omiy = Jo((i=)- 2md/}) andy

upper bound is plotted using (29). We can see that upper bounds

are quite tight for the entire range of SNRs, regardless of th&ear array with equally spaced antennas and the classical Jakes

number of antennas. It can be also shown that the asympt{ire|ation model with the uniform angular spectrum [27], the
slope of capacity curves over SNR is identical with that of i.i.¢,_ j)th entries of®7 and®y, are given by, respectively, [15]
cases in Fig. 1, although correlations reduce the diversity advan-

tages (a parallel shift of the capacity curve). Fig. 3 shows the er- ¢r,ij = Jo ((i — j) - 2mdr /A)
godic capacity of uniformly correlated Rayleigh-fading MIMO dr,ij = Jo((1 —j) - 2mdr/A)

channels with®; = ©; (p) and®z = ©, (p) as a function whereJ; (-) is the zeroth-order Bessel function of the first kind,
of correlation coefficienp at SNR of 20 dB. As expected, the, . . .
A is the wavelength, and; anddg are the interelement dis-

capac i_ty decrea;es significantly with an increase in correlati%pnces of the transmit and receive antenna arrays, respectively
coefiicienty, particularly for larger andr because the ConStamMore general extension of the Jakes one-ring mode,l of scatterers

correlation is the worst case model. to MIMO channels has been explored in [14].

Example 5 (Jakes Model [15], [27])In general, the fading  Fig. 4 shows the simulation results and upper bounds for the
correlation depends on both the antenna spacing and the engtodic capacity of Rayleigh-fading MIMO channels with the
gular spectrum of the incoming radio wave. If we employ dakes correlation model as a function of antenna spacing at SNR
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of 20 dB whent = » = 2, 4, 6, 8, and10. The upper boundis ~ '"———————— ' ' '
plotted using (25). We see that the degradation in capacity due . ﬁgﬂfggznd
the fading correlation is small when antenna spacing is grea Number of scafiorers. 826

than0.5), which agrees with the well-known result for spatia  ®  crannel matix 7 — s @2 H,0/ 1,312 1
diversity systems [27].

H ~N,, (0L, ®1,)

N
_ s H,~N,, (0181,
C. Double Scattering MIMO Channels [19] £ eof & =0,(0.1) b10 15
The i.i.d. or correlated Rayleigh fading between antenna el * :::g((g;; 1=8,r=12 P
ments, which are based on the assumption that only single sc ¢ t=6,7=9
tering processes occurred or equivalent single scattering p £ “°
cesses could be represented, cannot explain important rank- g
O

ficient behavior of MIMO channels. In [19], Gesbettal. pro-
posed a double scattering MIMO channel model that include 20 oz A
rank-deficient effects as well as spatial fading correlation. | e g

double scattering MIMO channels, the channel matrix can | e
written as [19] % 5 10 15 20 25 30 35

H= %@%2H1¢§/2H2¢1T/2 (30) SNR, 7 (dB)
S

~ N ~ N : Fig. 5. Ergodic capacity of double scattering MIMO channels wittansmit
whereH; ~ N, . (0’_17“ ® L), Hy ~ N0 (0, I ®_It)’ 515 andr receive antennas. = 6, &, = O, (0.1), &, = ©, (0.1), and®s =
the number of effective scatterers on both transmit and recegye(o.9)
sides, and correlation matric®s, @z, and®s are the transmit,

receive, and scatter correlation matrices, respectively. The ran

of the MIMO channel (spatial multiplexing ability) is primarilye (ps) Wherepr, pr, ps € [0, 1), then using (28) and The-

controlled through®s. In this model, it is possible to have un- . )
. . - em 111.3, we have an upper bound on the ergodic capacity as
correlated fading at both sides but have a rank-deficient MIM :
wn in (32) at the bottom of the page.

chanqeland hence poor capacity behavior. This channel is cafle ig. 5 shows the simulation results and upper bounds for
as apinholechannel.

the ergodic capacity of double scattering MIMO channels with
Theorem 111.3: Let H be selected according to (30) at each = 6, &7 = 6, (0.1), g = 6, (0.1), and®s = 6, (0.9).
symbol interval, then the ergodic capacity in bits/s/Hz for sucfhe upper bound is plotted using (32). This example serves to

'Example 6:If & = O, (pr), Br = O, (pr), andds =

channels is bounded as demonstrate the effect of rank deficiency of the channel on the
min {t, , s} & MIMO capacity behavior. We can see that the asymptotic slopes
(), <logs | > {(lf) (k!)® of capacity curves for = 8, r = 12 andt = 10, r = 15
k=0 5t do not increase beyond the slope foe= 6, » = 9 because
Z det (‘PT' o “12“) min {¢, 7, s_} = 6 in all three cases. In o_ther wc_;rds,_since the
1otz ik rank of®¢ is 6, there are no further spatial multiplexing bene-

1<iy <in < <ip <t | : X i
e * fits from increasing andr beyond6. It serves only to provide

Z det (Qﬁ’jz’ o ) additional diversity gains.

315325 - Ik
1<51<g2 < <gr < . . ..
Example 7: If spatial correlation does not exist, i.@r =1,

Z det (<I>§""2"“’"" ) } . (31 ®r = I, and®s = I, we have that

ULy Uy veey Upy .
1<ui<us<---<up<s min{t,r, s}

Y\ t\ [\ (s
Proof: Apply Jensen's inequality to (16) and take the(C), , <log, | > {(g) (k1)? (k) (k) (k)}
same steps in the proof of Theorem I1.3. O k=0
(33)
]ﬁNo extreme cases of (33) are the keyhole channel (see Sec-
*&n [1I-D) and the i.i.d. MIMO channel when=1 ands — oo,
pectively. Ifs = 1, (33) reduces to

Similar to correlated MIMO channels, the upper bound (3
is the logarithm of a polynomial of degreein {¢, r, s} in ~.
Therefore, the asymptotic slope of the capacity curve over S
is determined bymin {¢, r, s} in double scattering MIMO
channels. (C);., <logy (14 17) (34)

()< log, [{Z} { (2) w2 (D(D() (- a-ma—pe)”

k=0

(L= pr+kpr) (1 = pr+kpr) (1 - ps + kﬂS)H - (32)
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and if s — oo, from the fact that 18 ' ' ‘ v 1 '
min{t,r, s} k g.nalylti(;
. ) ,Y c 2 t r S 16 + imulation B -
| — ) (k!
QEI;O kZ—O (st) ( ) <k’> <k> <k> 1l Channel matrix H = o
m ’_7 E N _ a~N,(0,1,)
- DY g T ol [BAN(OL)
> (t) K <k> <k> SO
k=0 2
(33) becomes (22). P
A
&)
8+
D. Keyhole MIMO Channels [20], [21] >
In certain MIMO propagation environments, a degeneralg °f
channel with only a single degree of freedom (i.e., one-rar . t=r=2,4,6,8,10 |
channel matrix) may arise due to the keyhole effect [20], [21
In such a channel, the only way for the radio wave to propaga 2 ]
from the transmitter to the receiver is to pass through tt
keyhole, and each entry & is a product of two independent 9, s 70 pr 20 25 0 35
complex Gaussian RVs rather than the complex Gaussie SNR, 7 (dB)
Then, the channel matrifl for keyhole MIMO channels is _ _ _ _
given by [20], [21] Ir:é?:eS/e ali;gﬁﬂg:;apacny of keyhole MIMO channels withransmit andr
arfr azf - o
H =" = 01_[32 012_/32 Ozt.ﬂz (36) fers th_e div_ersity gain det_ermined hxy(t)_ + (r_) in ergodic
: : . : capacity point of view. Using Jensen’s inequality and (59), we
B fr - have an upper bound to (37) as
wherea ~ N; (0, I;) andB ~ N. (0, I,.) describe the rich (@), . <logy(147r7v)

scattering at the transmit and receive antenna arrays, respec-

tively, and the keyhole is assumed to ideally reradiate the caphich agrees with (34).

tured energy, like the transmit and receive scatterers. In fact, therig. 6 shows the ergodic capacity of keyhole MIMO channels
keyhole channelis a special case of the double scattering MIM@ent = » = 2, 4, 6, 8, and10. Analytical curves are com-
channel in Section II-C (see Example 7). Note that as all corputed using (37) and simulation results are also plotted to verify
ponents ofx andf are independent, all entries B are uncor- oyr analysis. This example demonstrates the effect of keyholes
related butank (H) = 1. SinceH is of one rank, we need not on the MIMO capacity. We can see that for amndr, the slope

use the random matrix results in analysis for keyhole channed$ capacity curves over SNR in decibels remains constant since
The fO”OWing theorem provides a closed-form solution for thﬂ]e channel has only a single degree of freedom regardless of
ergodic capacity of keyhole MIMO channels. the number of antennas. Increasingndr serves only to pro-

Theorem IlL4: If H = Ba” wherea ~ A (0, I,) and Vide diversity gains.
B ~ N, (0, I,), then the ergodic capacity in bits/s/Hz for such

channels is given by IV. CONCLUSION
A In this paper, we studied the capacity of multiple-antenna
(O, = logy (?) +1ogs () {9 (1) + ¢ (r)} systems in realistic propagation environments in the presence

logy (e) 3,2 t
@ O ('y

1,1 of spatial fading correlation, double scattering, and keyhole ef-
rt, 1, 0) (37) fects. Double scattering can describe the rank-deficient effect
o as well as spatial fading correlation and the keyhole makes the
wherey (z) = 1" (z) /I'(2) is the Euler'sdigammafunction  MIMO channel exhibit uncorrelated spatial fading between an-
[45, eq. (8.360.1)] and}"," (-) isthe Meijer's G-functio”[45, tennas but have a one-rank transfer matrix. We obtained the

eg. (9.301)]. _ closed-form formula for the ergodic capacity of i.i.d. Rayleigh-
Proof: See Appendix C. U fading MIMO channels and upper bounds for correlated and
We remark that as — oo, the last term in (37) vanishes anddouble scat?erlng channels. The upper bounds are in the form
the capacity becomes asymptotically of the logarithm of a polynomial in SNR—the degree of the

polynomial is equal to the rank of the MIMO channel and the
(), . — log, (1) +log, (e) {y () + ¢ (1)} (38) kth-order coefficient depends only on sums ofiatiowed prin-

K t cipal minor determinants of correlation matrices—and are quite
which shows that the use of multiple antennas in keyhole chdight for the entire range of SNRs. In particular, we derived
nels cannot provide the spatial multiplexing gain and only o$imple and closed-form capacity bounds for constant correla-
tion cases. The closed-form solution for the ergodic capacity of

3The Meijer's G-function is provided as the built-in function in commonkeyhole MIMO channels was also derived

mathematical software packages such as MAPLE and MATHEMATICA.
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APPENDIX A whereT (a, z) = [ e "2 'dx is the complementary in-
PROOF OFTHEOREM 1.1 complete gamma function [45, eq. (8.350.2)]. Using (44), we
The proof of Theorem Il.1 requires the following result orf et
the eigenvalue density of Wishart matrices. I=(qg—p+ l)!lfqﬂ)fzqel/u
Lemma A.1 (Bronk [39]):If Y ~ W, (¢, I,,), then the den- L aien )
sity function of an unordered eigenvaldef Y is given by : Z P (—q+p—l—1+k p ). (45
k=1
. lpz_:l N Pe*'\ L7 (V)] A>0 (39) Furthermore, the exponential integral functiBp (z) is the spe-
D (g—p+1)! Li ’ cial case of the complementary incomplete gamma function,

=0 .
l.e.,

whereL? (z) is the Laguerre polynomial of orderdefined as 1
[45, eq. (8.970.1)] E,(z)=2"""T(1—-n,z). (46)

13 (1) = L ergmn L (emagnta) From (45) and (46), we obtain
" o q—p+l 1
=2 v (00 T (40) T=-p 0 S B () @)
— n—1) 1 2

Substituting (47) into (43), we complete the proof of the

The above result can also be found in [1]. From (40) and tffgeorem. u
identity of [45, eq. (8.976.3)]

APPENDIX B
2i—2j P
Lot — I(a+i+1) Z ( i_jf) (29)! 129(20) PROOF OFTHEOREM I1.2
‘ - 22i4) — Jh(a+j+1) % Before proceeding to prove the theorem, it is necessary to
j=

(41) give the definitions of hypergeometric functions of matrix argu-
the eigenvalue density of the Wishart matkix~ W, (¢, I,) Ments.

in (39) can be rewritten as 1)_ _Complex multivariate hypergeometric coefficient for a
partition  [38, eq. (84)]:
1 4
LS ZZ {22 L ) (%)) o H +1), Ly (a. ) (48)
1— — = a—1 = =
i=0 j=0 1=0 (¢ —p+)! i1 Iy (a)
.<2%_2j>(2J+2q 2p>)\q pH = A>0. where(a), = a(a+1)---(a+n—-1),(a)g = 1,a # 0
i— 2j =1 is the Pochhammer symbot, = (ki, ks, ..., k,) denotes a

(42) partition of the nonnegative integesuchthak; > ko > --- >
k, > 0and)?_ k; =k, and
Using (42), we have

p
E [lndet (Ip + NY)] r, (a, K) — 7p(P—-1)/2 Hr(a +hi—it 1)
i=1
) 24) @ [ (-
ZZ 92i— z m ’ Y =G @ ]]a-i+ . (49)
Pt (g—p+Jj)! =1
2) Hypergeometric functions of matrix arguments [38, egs.
. <2i - 2j> <2j +2q — 2p> (87) and (88)]:
' ZJ_I an(al 7am§b1 /bnaA)
o0 _ - (al)n'“(am)n é“'l (A)
. /0 In (14 pA)APHe 2 gx b (43) - kzzo; (b1),. - (bn), k! (50)
=1 F(p)(al ceey G b1, ....bn;A B)
To evaluate the integrdlin (43), we use the following result _ Z Z al ) Cy (A) Cx (B) (51)
from [22, Appendix B]: PR ) Ch (Ip) k!
I, v) A /00 In (14 )2 Le *du, whereA f';lndB are He_r_mitian matrices ard,, (-) is the zonal
0 polynomial of a Hermitian matrix [38, eq. (85)].
v>0andn=1,2,... From the density o¥ ~ Q,, , (4, X, ¥) in (5), we have
- —-n + k,v
=(n-1)! Z ) (44)  Edet (V)] = = det (2) 7 det (A®) ¢, (B) (52)

k=1 L'y (9)
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where
é (B) = / det (V)" etr (o~ '£7'Y)
Y>0
AL (; B, ¢—12—1Y) dY. (53)

Using the expansion of the hypergeometric function in terms

zonal polynomials in (51) and the following properties of zonal

polynomials [34]:

Cu (1)
Cr (1)

(54)

and, for Hermitian matrice§ € C?*? > 0, A € CP*? > 0,
andRe (@) > p—1

/ etr (—SA) det (8)°
S>0

=T, (a, k) det (4) ™"

~? C.(SB)dS
C.(BA™Y) (55)

(53) can be evaluated as

ZZ

k=0 kK

- etr (—
= det (pX) q+uzz SRIAL

k=0 K
=P HIT, (¢ + v) det (£) 5 Fy (g + v, pig; B) .
(56)

Substituting (56) into (52) yields the result (6). For the speci
case thay = p, using»Fi (a, ¢; ¢; A) = det (I, — A)™“ fora

/ det (Y)97P*
Y >0
—12:*11’)@ ( _12’1Y)dY

(]+V k) Cx (B) éﬁ (Ip)

Hermitian matrixA € C”*? [34], we can show that (6) reduces

to (7).
APPENDIX C
PrROOF OFTHEOREM 1.4
Note that
det (I ”HHT) —det( —||a|| ,BBT)
=1+ (v/t) llall* 18]* - (57)
LetZ = ||la|®||8]]>, U = ||a|/?*, andV = ||8||*. Sincel/ andV’

are sums of andr independent exponential RVs, respectively, 2

they are central chi-square distributed witrand2r degrees of
freedom. The density function df is, therefore, given by [24]

<1
L qapo v (5)
9, (t47)/2-1
==K, +(2V2),
roTm o V)
where K, (+) is thevth-order modified Bessel function of the
second kind, and theth moment ofZ is given by

E[2] = /OOO oz (s = IJ: (]g g EZ; :
= (t), (1) -

pz (2)

z>0 (58)

(59)
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From (16), (57), and (58), we have

(C). = /Ooolog2 (1 + ’Vt—z) pz(2)dz

_ [T vz
= /0 logz( ; )pz(Z)dz
of e
+/ log2<1+—>pz()d . (60)
0
—I,
The integrall; in (60) is evaluated as
I =log, (7) +logs () {w () + 9 (M} (6D)

Expressindog, {1 + ¢t/ (vz)} in terms of the Meijer's G-func-
tion, namely [46, eq. (8.4.6.6)]

2,1 7#] 0,1
log, <1 + %> = log, (e) Gy <T 0.0

and using the integral table [45, eq. (7.821.3)]
/ w_”K(\/_)Gm"< )dx
0

o—

1 S
(O‘ bi, . )

p+q<2(m+n) :

(62)

A1y ooy Ap

by, b,

m, n+2
p+2,q

larga| < (m+n—1

2
- 30) ™
Re(o) <1—1|Re(v)|+ 1£r11<n Re (b;)
<j<m

(63)

we can evaluate the second integkaln (60) as

) 2.1 (770, 1
G2,2 -

(e (tr)/2-1
(r) 0)

(2 z)d7
log, (e Y1—r,1—¢0,1
_ g2())GZ§< ‘ T, )

TTOT(r
3 <t 1,1 )

_ logy(e) a2(t
rer(r) vl 7 t, 1,0

where the last equality follows from [45, eq. (9.31.2)]. Substi-

tuting (61) and (64) into (60) gives the result (37). O

2 10%2

L=rmrm ror

al

’

(64)

BN
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