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Abstract-In this paper, a new hybrid automatic repeat request 
(ARQ) scheme is proposed for data transmission in a power- 
controlled direct sequence (DS) code division multiple access 
(CDMA) system cellular system. Data frame is composed of 
interleaved Reed-Solomon codes. The depth of interleaving is 
determined by a power-control interval. After decoding each 
codeword with algebraic decoding, the post-decoding processor 
decides whether to accept the codeword or to discard it by using 
channel state information from the power-control processor. The 
proposed hybrid ARQ scheme significantly reduces the proba- 
bility of undetected error among accepted codewords without 
significantly reducing throughput. 

I. INTRODUCTION 

DIRECT sequence (DS) code division multiple access A (CDMA) system increases channel capacity in a mobile 
communication system [l]. In a DS-CDMA system, many 
users transmit signals over the same frequency spectrum 
simultaneously using unique pseudonoise (PN) sequences. 
Since PN sequences are not ideally orthogonal on a reverse 
link, interferences between users arise that cause a near-far 
problem. To overcome the near-far problem, feedback power 
control is used to enable a base station to receive equal power 
from each user. For a fading channel, power commands are 
issued at a higher rate than the fading rate to compensate fast 
fading [2]. 

In a coded system for a fading channel, interleaving and 
soft decision decoding are used to improve its performance 
[3] .  Interleaving converts burst errors into random errors. Soft 
decision decoding algorithms, such as generalized minimum 
distance decoding algorithm and Chase algorithm, are used 
for block codes [4], [5].  Soft decision requires channel state 
information (CSI) for each code symbol. If decoding failure is 
allowed in a decoding algorithm, the algorithm achieves lower 
probability of undetected error than without decoding failure 
[61. 

In this paper, a new hybrid automatic repeat request (ARQ) 
scheme is proposed for data transmission in a power controlled 
DS-CDMA cellular system. In the scheme, an error detecting 
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algorithm uses CSI for each code symbol, which is obtained 
from feedback power control. 

In Section 11, a new hybrid ARQ scheme is proposed. In 
Section 111, simulation results for its performance are given. 
The conclusion is given in Section IV. 

11. SYSTEM MODEL 

A. Hybrid ARQ Scheme in a Power-Controlled 
CDMA Cellular System 

A hybrid ARQ scheme is applied to a reverse link of a power 
controlled DS-CDMA cellular system. An M-ary orthogonal 
signal set is used for modulation. The size of an orthogonal 
signal set M is selected to be the same as the alphabet size 
q of a Reed-Solomon (RS) code with ith component denoted 
by c,, 2 = 1, 2, . . . ,  n. 

The block diagram of a receiver is shown in Fig. 1. It 
employs two branch antenna diversity to combat the effects 
of multipath. Not knowing the phase of a received signal due 
to fading in the channel, the demodulator detects a received 
signal noncoherently. Each correlator in a correlator bank is 
matched to one of the M orthogonal signals. 

With the outputs zk, 5 = 1, 2, . . . , M ,  from the square-law 
combiner, the decision device selects the largest to give an 
estimated code symbol T ~ ,  i = I, 2, . . . , n. For an orthogonal 
signal set, the largest output of the square-law combiner 
is proportional to signal power and the rest of outputs are 
proportional to noise and interference power. Power control 
interval Tp is selected so that its normalized value by the 
fading rate fo is less than 0.1. Suppose that there are m 
channel symbols in Tp. The channel state information (CSI) 
for an estimated code symbol T,  is given by 

m 

where zj, is the output of the kth square-law combiner at the 
j t h  symbol in ith power control period. In (1) the numerator 
and the denominator are average signal power and interference 
component during m channel symbols, respectively. Let yi 
denote the estimated signal to interference ratio (SIR) for an 
ith power control period. The values of $ corresponding to the 
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various values of X are obtained from computer simulation and 
stored in a lookup table. The SIR estimator gives an estimated 
SIR f j i  from X i  for each symbol by using the lookup table 
[2]. The estimated code symbols and corresponding SIR’s are 
deinterleaved. From a decoded codeword and estimated SIR’s 
for each code symbol, the post-decoding processor decides 
whether to accept the codeword or to discard it. 

A data frame for a hybrid ARQ is shown in Fig. 2. It 
is an m x n array composed of interleaved RS codewords 
with a code symbol being an element of the array 4, j 5 
1, 2, . . . ,  m, i = 1, 2, . . .  , n. Interleaving depth m and 
interleaving length n are set to be the same as the power 
control interval and the codelength, respectively. Each code- 
word in a data frame is individually accepted or rejected for 
retransmission. 

B. Error-Detecting Algorithm 

The result of bounded distance decoding is categorized into 
three types: correct decoding, decoding failure, and decoding 
error. Decoding failure occurs when a received word is not 

contained in a decoding sphere of any codeword. Decoding 
failure is a kind of error detection. 

We propose a new decoding algorithm that improves the 
performance of an RS code with little increase in complexity. 
With the hard-quantized symbol T,, erroderasure algebraic 
decoding is performed. The decoder outputs the decoded 
codeword i: unless decoding failure happens. Decoding failure 
is regarded as error detection. The post decoding processor 
performs error detection with C: and the estimated SIR 6%. 

With noncoherent detection of an M-ary orthogonal signal, 
the error probability of a code symbol c, with estimated SIR 
yz is given by 

For convenience, the order of components in a codeword is 
rearranged so that it becomes y1 5 y 2  5 . e +  5 &. The 
symbols of estimated SIR yc below a preset erasure tlhreshold 
Y, are erased. Let P,, denote the probability of symbol 
erasure. 

Now, error detection is performed. The reliability of a 
codeword i. computed by the post decoding processor is given 
by 

where F is the set of erased components with IF1 = f and 
E the set of components estimated as errors with /El = b 
and b 5 (&,in - f - 1)/2. R( t )  the probability that the 
codeword C was sent. Let A denote a set of dmin -- f - b 
least reliable components other than components in E among 
non-erased components. Each element of A is contained in 
{ f  + I, . . . , &in}. The set A determines a codeword C that 
is &in apart from E. The two codewords 13 and C have 
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different components in set A,  E ,  and F .  The codeword C 
does exist from the following property: for given any set of 
dmin components, a maximum distance separable code like an 
RS code contains q - 1 codewords of weight amin of which 
only nonzero components are at the given &in components [7, 
p. 3091. The symbol value of 6, however, is not obtained from 
set A. Let a relative threshold for error detecting be defined 
as a probability that a received vector has error in A, which 
is given by 

TR is the probability that codeword t was sent. In other 
words, TR is the reliability of codeword t. It is known from 
the definition of A that the codeword 6 has the maximum 
reliability among the codewords apart d,,;, from i. since the 
components of two codewords and C are different in the 
possible least reliable components including erasures. If R( i.) 
is greater than TR, then 2 has the maximum reliability among 
the codewords, apart from &;,itself. In this case, the post- 
decoding processor accepts E. If TR is greater than I?,(?), ? 
has the smaller reliability than that of C. In this case, the 
post-decoding processor discards C since there exists another 
codeword that has higher reliability than that of C obtained 
from algebraic decoding. 

From (3) and (4), the reliability test becomes 

Taking the logarithm on both sides after simplification, ( 5 )  
becomes 

To reduce the time for reliability test, precomputed values of 
ln[P,"/(l  - P;)] are stored in a lookup table of the post- 
decoding processor. 

Let P ~ E  denote the probability of undetected decoding 
error and PDF denote the probability of decoding failure. 
Both PUE and PDF are obtained as a function of a preset 
threshold bit energy to interference ratio &/Io and parameters 
of power control from computer simulation. Let PE denote 
the probability of undetected decoding error among accepted 
codewords, in short, the probability of decoding error. It is 
given by 

(7)  

Each codeword in a data frame is individually accepted 
or rejected for retransmission. Suppose that selective repeat 
retransmission protocol is used. The normalized throughput of 
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ARQ scheme is given by 

where k / n  is the code rate of an RS code. 

111. SIMULATION RESULTS 

The performance of the proposed hybrid ARQ scheme is 
evaluated for a power-controlled DS-CDMA cellular system 
by computer simulation. Suppose that transmitter power is 
updated by 0.5 dB every power control interval and that peak 
transmitter power is limited by 3 dB above a preset bit energy 
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Fig. 6. Normalized throughput of RS (7, 3) code for normalized power 
control interval. = 8, Y, = 7.6 dB. (a) . fuTp = 0.01, (b) f,gTp = 0.02, 
(c) f ~ T p  = 0.05, (d) f ,gTp = 0.01 with EDA, (e) f ~ T p  = 0.02 with 
EDA, and ( f )  f ~ T p  = 0.05 with EDA. 

to interference ratio (Eb/Io) threshold. With this assumption, 
the average bit cncrgy to interferencc ratio is a l m o s t  e q u a l  to 

the preset Eb/Io threshold. Also suppose that a return channel 
for power control commands has the bit error probability of 
0.1. We approximate other user interference as a Gaussian 
variable with zero mean. From (7) and (8) the probability of 
decoding error PE and normalized throughput are obtained 
as a function of a preset Eb/Io threshold and parameters of 
power control. 

In Fig. 3, the probability of decoding error PE is plotted 
for various values of symbol erasure threshold Y, with RS 
(7, 3) code, f D T p  = 0.01, and M = 8. It is shown that 
PE is much smaller with the error-detecting algorithm (EDA) 
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than without EDA. PE decrease as Y, increases with EDA, 
while PE increases as Y, increases without EDA. In Fig. 4, 
normalized throughput is plotted for Y, with RS (7, 3) code, 
f D T p  = 0.01, and M = 8. It is shown that q is minimally 
affected by EDA for small Y, and large Eb/lo. 

In Fig. 5, PE is plotted for various normalized power 
control interval f D T p  with RS (7, 3) code, M = 8, and 
Y, = 7.5dB. It is shown that PE is not significantly affected 
by f D T p  when f D T p  is less than 0.1. In Fig. 6 , ~  is plotted for 
various fDTp with RS (7, 3) code, M = 8, and Y, = 7.5dB. 
It is shown that 7 is not much affected by f D T p  when forp 
is less than 0.1. 

In Fig. 7, PE is plotted for a few codes with similar code 
rate but different alphabet size q ( =  M )  with fDTp = 0.01, 
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Us = 7.5dB. It is shown that PE is significantly reduced 
by using EDA for large q. In Fig. 8, 11 is plotted for a few 
codes with similar code rate but different alphabet size q with 
f D T p  = 0.01, Y, = 7.5dB. It is shown that 11 is more 
influenced by code rate than by EDA. 

IV. CONCLUSION 
We propose a hybrid automatic repeat request (ARQ) 

scheme for data transmission in a power-controlled DS-CDMA 
cellular system. This hybrid ARQ scheme can be easily applied 
to any data frame. Feedback power control provides channel 
state information for each code symbol. The channel state 
information for each code symbol is utilized in an error- 
detecting algorithm to decide whether to accept the estimated 
codeword or to discard it. The error detecting algorithm 
significantly reduces the probability of undetected error among 
accepted codewords with little throughput reduction. 
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